Neuropathology in Drosophila membrane excitability mutants.

نویسندگان

  • Tim Fergestad
  • Barry Ganetzky
  • Michael J Palladino
چکیده

Mutations affecting ion channels and neuronal membrane excitability have been identified in Drosophila as well as in other organisms and characterized for their acute effects on behavior and neuronal function. However, the long-term effect of these perturbations on the maintenance of neuronal viability has not been studied in detail. Here we perform an initial survey of mutations affecting Na+ channels and K+ channels in Drosophila to investigate their effects on life span and neuronal viability as a function of age. We find that mutations that decrease membrane excitability as well as those that increase excitability can trigger neurodegeneration to varying degrees. Results of double-mutant interactions with dominant Na+/K+ ATPase mutations, which themselves cause severe neurodegeneration, suggest that excitotoxicity owing to hyperexcitability is insufficient to explain the resultant phenotype. Although the exact mechanisms remain unclear, our results suggest that there is an important link between maintenance of proper neuronal signaling and maintenance of long-term neuronal viability. Disruption of these signaling mechanisms in any of a variety of ways increases the incidence of neurodegeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indirect Suppression Involving Behavioral Mutants with Altered Nerve Excitability in DROSOPHILA MELANOGASTER.

Two classes of X-linked behavioral mutants of Drosophila melanogaster, leg-shaking mutants and bang-sensitive mutants, are suppressed by nap(ts) (no action potential, temperature-sensitive), an autosomal temperature-sensitive paralytic mutation. So far, nap(ts) is found to suppress thirteen mutations at seven loci, two of which produce leg shaking and five bang-sensitivity. Suppression is reces...

متن کامل

Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin

Mutations in DCTN1, a component of the dynactin complex, are linked to neurodegenerative diseases characterized by a broad collection of neuropathologies. Because of the pleiotropic nature of dynactin complex function within the neuron, defining the causes of neuropathology in DCTN1 mutants has been difficult. We combined a genetic screen with cellular assays of dynactin complex function to ide...

متن کامل

The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis.

We have characterized easily shocked (eas), a Drosophila "band-sensitive" paralytic mutant. Electrophysiological recordings from flight muscles in the giant fiber pathway of adult eas flies reveal that induction of paralysis with electrical stimulation results in a brief seizure, followed by a failure of the muscles to respond to giant fiber stimulation. Molecular cloning, germline transformati...

متن کامل

Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants.

A seizure-paralysis repertoire characteristic of Drosophila "bang-sensitive" mutants can be evoked electroconvulsively in tethered flies, in which behavioral episodes are associated with synchronized spike discharges in different body parts. Flight muscle DLMs (dorsal longitudinal muscles) display a stereotypic sequence of initial and delayed bouts of discharges (ID and DD), interposed with gia...

متن کامل

Contribution of EAG to excitability and potassium currents in Drosophila larval motoneurons.

Diversity in the expression of K(+) channels among neurons allows a wide range of excitability, growth, and functional regulation. Ether-à-go-go (EAG), a voltage-gated K(+) channel, was first characterized in Drosophila mutants by spontaneous firing in nerve terminals and enhanced neurotransmitter release. Although diverse functions have been ascribed to this protein, its role within neurons re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 2006